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Abstract

The two-player, imperfect information, poker card game
Goofspiel is one of the most commonly-used benchmarks
for testing equilibrium-finding algorithms. While Goofspiel
is a qualified instance of imperfect information decision prob-
lems, it considers zero-sum cases exclusively, which is clas-
sified as one of the major limitations. And even non-zero sum
games are more general cases, they haven’t receive sufficient
attention like their zero-sum counterparts for years. In this
work, we examined how traditional CFR algorithm behaves
in selected information sets, and show that there are poten-
tially equilibrium points not reachable by CFR iterating. Then
we characterized non-zero-sum games and objective func-
tions, and reformulated the game into a single-objective op-
timizing problem. It turn out that the problem generally falls
into linear-quadratic programming category, whose convex-
ity is typically not guaranteed. We also provided an iterative
approach to converge to these equilibrium points, and com-
pare with CFR algorithm. It turn out that our iterative method
is capable of finding equilibrium points that CFR sometimes
fails to converge to, at a cost of augmenting the traditional it-
erative procedure by adding exploitability minimizing mech-
anism, but computational overhead still comparable with ex-
isting CFR.

Introduction
Non-zero-sum, imperfect information game is a theorized
model to formulate many sequential move real life deci-
sion problems. In recent years there have been great artifi-
cial decision platforms to solve traditional chess-like games
like Alpha-Go. After perfect information games optimized
and solved relatively well, imperfect information games like
many poker variants had start gaining much attention, how-
ever, imperfect information games features independence
between two players’ payofwith non-zero payoffs, so they
receives much less attention than its zero sum counterparts.

Like these counterparts, the imperfectness of the infor-
mation makes the reward of action the player has made rely
on hiss opponent, which bring uncertainty into the decision
problem and make player find its best decision more difficult
than before. While zero-sum game problem can be solved ef-
ficiently by using regret-descending iterative algorithms to
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find its Nash equilibrium, whether these algorithm can be
naively applied on non-zero sum game problem should be
speculated. Because of the independence of player payoffs,
many algorithms, for example, the well-known Mini-Max,
are no longer providing optimal solutions, since it does not
necessary mean player’s opponent will be minimized while
its opponents maximizing their payoffs. This also pose pro-
found impacts on its Nash equilibrium, more specifically, the
player’s payoff is no longer satisfy the involution of the con-
vex duality, which no longer guarantee opponent’s deviation
from Nash equilibrium will constrained below O(dx2) but
O(dx) instead.

The most popular family of iterative method for find-
ing equilibrium points is counter-factual regret minimization
(CFR) (Martin et al. 2007). CFR is basically minimizing the
regret value by adding convex combination to update current
strategy, which increments into a simplex-shaped polytope
for all the strategies that results in a higher payoff(Martin
et al. 2019) (Song et al. 2019; Zhang and Zhao 2018), and
gradually shrink that polytope into the equilibrium point. In
practice, that typically converges quicker than O( 1

ϵ2 ) espe-
cially for CFR+ (Tammelin 2014), which is used to solve
heads-up limit Texas hold’em poker (Noam et al. 2019).
(Brown and Sandholm 2018) In order to solve the problem
that exhibits ill-condition values, Tuomas el. al (Noam et al.
2019) proposed an discount mechanism for assign different
wights for every iterations.(Silver et al. 2016, 2017, 2018;
Schrittwieser et al. 2020) Yet for these algorithms does not
rely on zero-sum presumption, it is important to check which
or what type Nash Equilibrium these algorithms will con-
verge to, how they behave, and therefore whether they are
efficient.

In this paper, we focus on two-player non-zero sum game.
To make things familiar, we customized existing zero-sum
poker card game goofspiel to a non-zero sum variant. We
proposed a hybrid iterating method inspired by Counter-
factual Regret Minimization and Exploitability Descending.
Firstly, since John Nash stated in his work (Mccain and Mc-
cain 2010), each player has its mixed strategy comprised of
pure actions that has maximal therefore equal payoffs(Su
et al. 2020). This allows solving normal form games by pick-
ing two (or more) pure actions, finding the opponent’s prob-
ability distribution when these pure actions’ payoffs coin-
cides, and check whether other not picked actions are all



sub-optimal(Marc et al. 2009; Martin et al. 2019). Then the
CFR algorithm is applied to solve customized goofspiel, we
show how CFR behaves both at iterating and near equilib-
rium, and then there are cases that CFR may skip and miss
some equilibrium points and deviate toward other equilib-
rium. Then we proposed a novel methodology that fusion ex-
ploitability minimizing with existing CFR. Finally, we tested
the algorithm on same customized goofspiel and the algo-
rithm also exhibits excellent converging behavior.

Related Work
Gutierrez et. al (Gutierrez Julian and Michael 2000) study
non-zero-sum n-player games in which the choices available
to players are defined using the Simple Reactive Modules
Language (SRML), a subset of Reactive Mod- ules (Alur
and Henzinger 1999), a popular and expressive system mod-
elling language that is used in several practical model check-
ing systems (e.g., MOCHA (Alur et al. 1998) and Prism
(Kwiatkowska, Norman, and Parker 2011)). Reactive Mod-
ules supports succinct and high-level modelling of concur-
rent and multi-agent systems. In the games we study, the
preferences of system components are specified by associ-
ating with each player in the game a temporal logic (LTL)
formula that the player desires to be satisfied. Reactive Mod-
ules Games with perfect information (where each player can
see the entire system state) have been extensively stud- ied
(Gutierrez, Harrenstein, and Wooldridge 2015a).

Finding a Nash equilibrium is an important, interesting,
and well-studied problem Finding (even an approximate)
Nash equilibrium in a two-player general-sum game or in
a multiplayer game is PPAD-complete (Chen, Deng, and
Teng 2009). Furthermore, the multiplayer games are FIXP-
complete (Etessami and Yannakakis 2010) and the query
complexity has been examined in Babichenko. In contrast,
a correlated equilibrium can be computed efficiently (Jiang
and Leyton-Brown 2011). In larger games, it is not only
the computation time that matters but also the memory re-
quirements of storing the players’ payoffs, which grow ex-
ponentially in the number of players in normal-form games;
classes of games have been introduced where the payoffs can
be compactly represented (Jiang, Leyton-Brown, and Bhat
2011). Two-player zero-sum games can be solved in poly-
nomial time.

In principle, one can find all equilibria since the non-
linear equations are polynomials (Herings and Peeters
2009)(Daskalakis, Goldberg, and Papadimitriou 2009). The
idea is to enumerate all supports, solve all roots of the poly-
nomial equations, and select the solutions that correspond
to probability distributions. The methods of finding all equi-
libria are probabilistic, that is, they will find all solutions
with given probability when they are run for at least some
amount of time (which depends on the probability). There
are exponentially many supports in the game and there can
be exponentially many equilibria. Moreover, the homotopy
methods (global New-ton, tracing procedure, or quantal re-
sponse method) are not guaranteed to find all equilibria.

The homotopy methods that use the global Newton
method do not converge globally. Govindan and Wilson
observe that the iterated polymatrix approximation method

typically converges globally but is not failsafe and may get
stuck in some games. They find that the problem with ho-
motopy methods is that they need to traverse nonlinear paths
and require many small steps in order to obtain reasonable
accuracy. They also ob- serve that the homotopy path may
have many twists and reversals. Goldberg et al. construct
examples where homotopy methods will not only need an
exponential number of pivots but also an exponential num-
ber of direction reversals. Herings and van den Elzen and
Herings and Peeters present a globally convergent homo-
topy method but note that the triangulations must have very
refined mesh and the homotopy path must be traced numer-
ically.

What makes it more challenging is that the backward in-
duction, what was used in perfect games, is unable to find the
best action. This is because the perfect information games
allows induction, which always go extreme and produces
pure strategies as their equilibrium points, which is typically
not the case in imperfect games. Although there are proofs
shows that CFR can converge to Nash equilibrium in zero-
sum games, and the necessary condition for CFR converges
is exactly Nash equilibrium, the proof for sufficiency that
CFR will converge is still absent.

Background

Preliminaries
An imperfect-information game have both normal form
and extensive-form, in this paper we use both of them. For
extensive-form, the game is represented by a decision tree
start from the root. There is a set for all the players called
P . Each node is identified by a sequence of all actions taken
through the path root to themselves called h for history, root
has its history empty. In classical definition, each node has a
player, who makes the action a ∈ A if any actions are avail-
able. Joint decision nodes which have multiple players make
decisions simultaneously are possible, which is a embedded
norm form game into extensive form, and can drastically re-
duce the complexity when the game has sub-games. Every
actions leads to child nodes that represent game states after
they are committed. Let H to be the set of all the histories,
for nodes identified as h and h′, if node h′ is child or n-th
generation child node of h, then it is called h ⊑ h′. For the
leaf nodes who has no available actions and terminates the
game, therefore no child nodes, their history sequences are
not any prefix of other histories, we use Z ∈ H for repre-
sent these nodes. All players will receive a payoff or reward
when the game reaches leaf nodes. We call ui(z) for what
player i can receive at leaf node z. We denote the range of
payoffs in the game by ∆, and ∆i represent the difference
between maximal and minimal payoffs for player i ∈ P .

In imperfect-information games, since actions are not
guaranteed to be observed by all the players, there are dif-
ferent nodes whose history appears identical view by some
players. Such set of nodes are called information sets S.
Apparently, all nodes n ∈ S have same player i, which is
not the case conversely. However, all nodes of same player
can be first aggregated into information sets, and all infor-
mation sets can be aggregated into information collection



Ii for every player i. It will later show that the information
sets, not nodes, are the minimum units for formulating strat-
egy problems, which we call A(S) that all available actions
on information sets.

In extensive game, the player choose action by a stochas-
tic manner, at each information set S, all the players assign a
distribution on each available action a. Every player has its
strategy σi that is a mapping that maps every information
sets S ∈ Ii with a vector R|A(S)|, namely, σi(S) ∈ R|A(S)|.
It is common that σ−i is used as other players’ strategy. The
set of all players’ strategy, σ, is called strategy profile.

Properties
Let ui(σi, σ) to be the player i’s payoff. The Nash equilib-
rium is a strategy profile σ∗ that every unilateral changes in
σi profile will not increase ui(σi, σ−i), i.e.

∀i, ui(σi, σ−i) = max
σ∗
i

ui(σ
∗
i , σ−i) (1)

For measuring how far the players are deviating from the
equilibrium, exploitablility is defined as:

epi(σi, σ−i) = max
σ∗
i

ui(σ
∗
i , σ−i)− ui(σi, σ−i) (2)

ep(σ) =
∑
i∈P

epi(σi, σ−i) (3)

By definition, we have:

ep(σ∗) =
∑
i∈P

epi(σ
∗
i , σ

∗
−i) = 0 (4)

In two-player norm form games, each player’s payoff can
be defined as entries in two matrix, let (A,B) be a binary
tuple of m-by-n matrices. Let m and n to be number of de-
cisions, or pure strategies, available in the information set.
So a pair of mixed strategy of both players, (x, y), has its
entities non-negative and sum to be unity.

Proposition 1 (Best response condition) Let x and y be
the mixed strategies of both player plays. Then all the non-
zero-probability actions has maximal payoff and therefore
mutually equal.

xi > 0 ⇐⇒ aTi y = u = max
i

(aTi y) (5)

where ai are row vectors of matrix A, and:

yj > 0 ⇐⇒ bTj x = v = max
j

(bTj x) (6)

where bj are column vectors of matrix B.
What did Proposition 1 alleviate is the infinite mixed

strategy problem to finite-dimension inequalities formation,
which however at the cost of numerical behavior of best re-
sponses. That the collection of best responses would drop at
most all but one of its elements even if an opponent strat-
egy deviates a little. Nevertheless, the algorithm can be used
reversely, say, for example player 1, not to find what pure ac-
tions are the collection I of best pure strategies should play 1
player against player 2’s y, but when I is potentially possible
to become the collections of player’s y.

Algorithm 1: NonZeroSum-Matrix
Input: A,B
Output: strategy profile x, y

1: function NonZeroSum-Matrix (A,B):
2: m,n = A.shape
3: for k← 1 to min(m,n) do
4: for I : sum(I) = k, I ∈ Rm, Ii ∈ 0, 1 do
5: for J : sum(J) = k, J ∈ Rn, Jj ∈ 0, 1 do
6: y = A−1

[I,J]1

7: if 0 ≤ y ≤ 1, Ay ≤ 1 then
8: Ibest = y
9: end if

10: end for
11: end for
12: for J : sum(J) = k, J ∈ Rn, Jj ∈ 0, 1 do
13: for I : sum(I) = k, I ∈ Rm, Ii ∈ 0, 1 do
14: x = B−1

[I,J]1

15: if 0 ≤ x ≤ 1, BTx ≤ 1 then
16: Jbest = x
17: end if
18: end for
19: end for
20: for I : sum(I) = k, I ∈ Rm, Ii ∈ 0, 1 do
21: for J : sum(J) = k, J ∈ Rn, Jj ∈ 0, 1 do
22: J ′ = Ibest−J = where(Ibest > 0)
23: I ′ = J ′

best−I = where(J ′
best > 0)

24: if I ′ = I then
25: x = Ibest
26: y = Jbest
27: end if
28: end for
29: end for
30: end for
31: return x, y

Methodology
To make both (5) and (6) have unique solution, for example,
if there are k non-zero entries in x, namely x1, and the rest
zero-entries x0, the linear problem should contain exactly k
equations. Let y1 to be non-zero part of y. From Ck

n possi-
ble different y1s, they forms k × k linear equation, which is
required by uniqueness of solution.

Clearly, this method provides Nash equilibrium points at
the cost of NP-hard, by enumerating all the 1 to min(m,n),
it requires all the 2min(m,n). Conversely, the counterfactual
minimization method providesO( 1

ϵ2 ). So the NonZeroSum-
Matrix method is only tractable in small sized information
sets, and should be act as benchmark to test whether other
algorithms could find equilibrium in test-size problem.

In a nonzero-sum game with EA = EB , minimax is no
longer optimal, because it wrongly assumes that both play-
ers use the same evaluation function. Nonetheless, A’s min-
imax does guarantee the worst case outcome for A, because
it proceeds as if B would always choose the worst possi- ble
moves against A. Therefore, minimax is used as the baseline
for comparisons in our examples. More generally, we con-



sider imperfect information nonzero-sum games, in which
players can have incomplete mutual knowledge and thus
SPE does not apply.

Inspired the existing algorithms, the counterfactual regret
minimization is slightly different naively applying gradient-
based optimization method, but used convex-combinations
instead. For any x

m∑
i=1

xi = 1, 0 ≤ x ≤ 1 (7)

and similar y, there exist:

u(x, y) = xTAy (8)

v(x, y) = xTBy (9)

In typical CFR+ algorithm, since Taylor expansions is valid
when iteration T approaching to infinity, let R as regret on
all the actions, as the rule of the iteration have:

x′ =
R+ r∑
R+

∑
r

(10)

let
p =

r∑
r

(11)

x′ =

∑
Rx+

∑
rp∑

R+
∑
r

(12)

x′ =

∑
Rx+

∑
rx−

∑
rx+

∑
rp∑

R+
∑
r

(13)

x′ = x+

∑
r∑

R+
∑
r
p (14)

x′ ≈ x+

∑
r∑
R
p (15)

Since the all the regret vector r comes from strictly posi-
tive actions that has better response for opponent, the payoff
functions u(x′, y) > u(x, y) always holds.

Definition 1 Let fi from advisor i ∈ {1, 2, ..., N} to
be approximation of best strategy y, player’s strategy p̂ is
convex combination of fi, and a non-negative loss function
ℓ(p̂, y). Then the instantaneous regret value for p̂ deviating
away from fi is defined as ri = ℓ(p̂)− ℓ(fE).

Definition 2 If approximation above is repeated for n
times, then the cumulative loss functions for player and ad-

visor i ∈ {1, 2, ..., N} are defined as L̂n =
n∑

t=1
ℓ(p̂t, yt) and

Li,n =
n∑

t=1
ℓ(fi,t, yt) respectively, and the cumulative regret

is defined as Ri,n =
n∑

t=1
ri,t = L̂n − Li,n

Theorem 1 Let ϕ to be function from R to R+

is a non-negative, convex and increasing function, then

sup
yt

N∑
i=1

ri,tϕ
′(Ri,t−1) ≤ 0

Proof Since ϕ′(Ri,t−1) > 0, using Jensen’s inequality for
all y,

ℓ(p̂t, y) = ℓ


N∑

i=1

ϕ′(Ri,t−1)fi,t

N∑
j=1

ϕ′(Rj,t−1)

, y

 ≤
N∑

i=1

ϕ′(Ri,t−1)ℓ(fi,t,y)

N∑
i=1

ϕ′(Rj,t−1)

Lemma 1 Let rt = (r1,t, r2,t, ..., rN,t) ∈ RN to be
instantaneous regret vector, and cumulative regret vector

Rn =
n∑

t=1
rt. Then the potential function Φ : RN →

R+ is defined as Φ(u) = ψ

(
N∑
i=1

ϕ(ui)

)
, where ϕ :

R → R+ is any non-negative increasing function, and
ψ : R+ → R+ is any non-negative function for scal-
ing purpose with strictly increasing and concave properties.
Then p̂t =

∇Φ(Rt−1)·ft
N∑

j=1

∇Φ(Rt−1)j

, and theorem 7.3 is equivalent to

sup
yt

rt · ∇Φ(Rt−1) ≤ 0

Lemma 2 Φ(Rn) ≤ Φ(0) + 1
2

n∑
t=1

C(rt), where C(rt) =

sup
u∈RN

[
ψ′

(
N∑
i=1

ϕ(ui)

)
N∑
i=1

ϕ′′(ui)r
2
i,t

]
Proof 2 Φ(Rt) = Φ(Rt−1 + rt)

= Φ(Rt−1) +∇Φ(Rt−1) · rt + 1
2

N∑
i=1

N∑
j=1

∂2Φ
∂ui∂uj

ri,trj,t

≤ Φ(Rt−1) +
1
2

N∑
i=1

N∑
j=1

∂2Φ
∂ui∂uj

ri,trj,t

where the second-order term of Taylor expansion shows that
N∑
i=1

N∑
j=1

∂2Φ
∂ui∂uj

ri,trj,t

≤ ψ′′
(

N∑
i=1

ψ(ξi)

)
N∑
i=1

N∑
j=1

ψ′(ξi)ψ
′(ξj)ri,trj,t

+ψ′
(

N∑
i=1

ψ(ξi)
N∑
i=1

ψ′′(ξi)r
2
i,t

)
= ψ′′

(
N∑
i=1

ψ(ξi)

)(
N∑
i=1

ψ′(ξi)ri,t

)2

+ψ′
(

N∑
i=1

ψ(ξi)
N∑
i=1

ψ′′(ξi)r
2
i,t

)
≤ C(rt)

Theorem 2 For any convex loss function ℓ, if it takes val-
ues in [0, 1], if scaling function ψ is polynomial weighted
function, then for any sequence y1, y2, ...yn the loss func-
tion have L̂n − min

i=1,2,...,N
Li,n ≤

√
n(p− 1)N2/p, which

also means that regret value is o(n) when n→∞
Proof Since ψ′(x) = (x

2
p )′ = 2

px(p−2)/p , and

ϕ′′(x) = (xp+)
′′ = p(p − 1)xp−2

+ , where x+ floors
negative components to zero while keeps the positive
component. By Holder inequality,
N∑
i=1

ψ′′(ui)r
2
i,t



≤ p(p−1)
(

N∑
i=1

(
(ui)

p−2
+

)p/(p−2)
)(p−2)/p ( N∑

i=1

|ri,t|p
)2/p

Thus,

ψ

(
N∑
i=1

ψ(ui)

)
N∑
i=1

ψ′′(ui)r
2
i,t

≤ 2(p− 1)

(
N∑
i=1

|ri,t|p
)2/p

which means that

Φp(Rn) ≤ (p− 1)
N∑
i=1

||rt||2p

≤ n(p − 1)N2/p which means that the regret grows only
sub-linearly. i.e. RT

T → 0 when T →∞, it’s asymptotically
approaching to best response of player should follow with.

Remark What inspired the CFR is the convex combina-
tion with better actions, however, what to be maximized is a
multiple-objective u1(x, y) and u2(x, y). The exploitability
provides no-exploitability method just like existing CFR+
algorithm, which can also reformulate two-player non-zero
sum games into single object optimization problem:

max
x,y

(u(x, y)−max
p

u(p, y)+ v(x, y)−max
q
v(x, q)) (16)

For the iterating method, we added exploitability terms for
augmenting the existing CFR method:

rxi = u(xi, y)− u(x, y) (17)

rxepyi = −max
q
xi, q (18)

x′ = x+
rx∑
Rx

+
rxepy∑
Rxepy

(19)

y′ = y +
ry∑
Ry

+
ryepx∑
Ryepx

(20)

This will perform maximize player’s own payoff, and mini-
mize opponent’s exploitability, which degenerate to existing
CFR when the problem is just zero-sum cases.

Experiments
The equilibrium points
We use the game of Goofspiel variation as a test-bed for the
techniques introduced in this paper. In our experiments, we
used a different assessment of the effectiveness of the algo-
rithm in terms of availability than the original one. The new
evaluation criterion is defined as a head-to-head comparison
between the adversarial sides, weighted differently, and the
contrasting algorithms respectively, counting the final bene-
fit of both sides.

Since that customized variant of Goofspiel was used as a
test-bed for the techniques of CFR-EXP, in this experiment,
all the goofspiel upcards are treated as 1, but weighted as
[5.00, 1.33, 2.71, 4.27] for player 1, and [4.10, 6.28, 3.33,
3.84] for player 2. When one player wins a card, this con-
tributes their payoff by how the card weighted by this player,
while the other’s decrease by how this card weighted by that
player.

The first chart reveals how both players make decision at
first card, this is a mixed strategy profile, which suggests
both the players bet their largest card. The empirical con-
verge rate at won’t take effect on initial few turns, rather, it
diverge away final equilibrium point by 0.771 for player 1
and 0.479 for player 2.

The result of how the players deal with their second card
is presented in Figure 3 and 4. First, their strategies are con-
verging, and therefore the equilibrium point’s strategy pro-
file is found. This can also be verified from the view of re-
gret controlling - for both players and at each point where
they make decisions, the sum of regrets for all available ac-
tions grows sub-linearly, this is also empirically verified the
regret-based theories.



Figure 1: How payoff of pure and mixed strategies evolves at the first card.

Figure 2: Strategies and regrets for players to decide their first cards.



An interesting result from the Figure 3 and 4 is, once
entered into equilibrium, both players’ strategy, typically a
mixed one, are consisted of same number of pure strategies,
however, this is natural result of LRS-Nash theorem, since
the pure strategy, will almost always, i.e. probability = 1,
have a unique best response from the opponent, which will
never make opponent takes 2-action mixed strategy. This
can be exemplified by 2-action mixed equilibrium - if any
player, say, player A, adopts a 2-action mixed strategy, there
almost always have a 2-mixed strategy response from the
other player, the player B. This can be break into 3 cases:
(1) Any 1-action pure response from B will almost never
make 2 actions of A have same payoffs.
(2)A certain 2-mixed response for B is possible, since B’s
some partitions of probability can make A’s two actions have
same payoff.
(3) Three-action and beyond for B are also impossible. Since
if any additional action is presented that is sub-optimal than
the 2 previous actions, this sub-optimal action will ruled out
and the strategy returns to a 2-mixed equilibrium, if the ac-
tion added has better payoff, this will make B deviates to
the new action, shrinking, or even rule out one action from
already-existing 2-mixed strategy, or make A deviates from
current 2-mixed strategy to another strategy, regardless how
the new equilibrium point looks like.

From the Figure 3, it can be verified that the curve of cfv
always try to follow the curve of action(s) with the highest
payoff, using a steady yet fast method to follow. If two or
more actions are best responses that comprised the mixed
strategy, their payoffs compete and take turns to lead other
actions. Be sure to not confused with a truly sub-optimal
action, which disadvantage is permanent and can never be
overturned.

While the payoffs of pure-strategies can be oscillating
wildly, the curve of cfv adopts a fast-yet-smooth pattern to
realize payoff-maximization and guarantee a converge. This
is because the negative instant regret are vanishing and rul-
ing out the sub-optimal action, and also because the regrets
sum across the actions’ are growing yet sub-linearly, which
makes the updating step length smaller across the times, yet
allow the significant updates influencing the subsequent it-
erations.

Behavior near Subgame equilibrium
Since we considered the problem of computing an equilib-
rium solution for non-zero-sum games. The most common
solution concept is the Nash equilibrium. For ϵ 0,a strategy
profile is an ϵ - Nash equilibrium if no player deviates from
it.

As results 4 shows, how player 1’s and 2’s strategy
evolves when high loss is presented, and how the negative
influence of bad initial guess is dissolved when strategy were
significantly off-equilibrium.

While higher card weight draw much attention on any
players, the chaining logic makes players deliberately give
up the high weighted cards by throwing low-ranking cards,
for example, the subgame [(1, 1)]. The converging process
by the ITAE metric are 3.394 and 5.967 for player 1 and
player 2 respectively, and characteristic time frame required
by the players to perform a fully-updated cycle are 7.91 and
7.55, respectively. More specifically, as the Figure 1 shows,
the player 1 bet more often his card-4 for a 5.00 reward,
while the player 2 bet a little mixed strategy, which throw
card-1 at 34.7%, but concentrates more at his second card
for a 6.28 reward.

When one player has strategy dominates any other avail-
able strategies, his opponent updating strategy quadraticlly.
This is same in CFR because the vanishing of the gradient.

Exploitability descending and its non-convexity
The exploitability of the both player at subgame [(1, 3), (2,
3)] has three possible equilibrium points, however, only (1,
0) became the converging limit of CFR algorithm.

For example, the player 1 and 2 at the information set they
have thrown cards (1, 3) and (2, 3) respectively, the strategy
profile approaching to the equilibrium point (0.825, 0.175),
(0.318, 0.682) at first, but since it is not a CFR-stable saddle,
the CFR iteration process shift away and headed towards (1,
0), (0, 1) instead.

Both equilibrium should be placed exactly at [0.00, 0.31,
0.00, 0.69] for player 1 at his first card, while [0.27, 0, 0,
0.73] for player 2 at his first card. The error terms mainly
comes from our algorithm accumulates regret in the very
beginning of the game is played, they should shrink to 0
asymptotically when T approaches infinity.



Figure 3: The evolution mixed strategy’s payoff, cfv, and choices’ payoff.

Figure 4: Strategy of their second cards. Results show how player 1’s and 2’s strategy evolves when high loss is presented.
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