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Abstract

General-sum (GS) games are decision problems that the pay-
offs of players are not necessarily correlated, which oppo-
site is constant-sum (CS) games that the sum of payoffs
is constant. Common poker card games can be modeled as
CS games, which has aroused much attention. However, GS
problems are not studied as thoroughly as CS problems.
Moreover, GS games are more complex than CS games, es-
pecially when not all information is publicly accessible to
all players, which is known as imperfect information games
(IIGs). In the theoretical view, CS-IIGs are cases degenerate
to bilinear saddle point problems and enjoy various well-form
properties, while GS-IIGs are linear-quadratic programming
problems, and the payoffs of players may vary at different
order. Such differences have made methods like first-order
methods and various variants of counterfactual regret (CFR)
minimization that are effective in CS-IIGs perform signifi-
cantly poorly in GS-1IGs. In this paper, we proposed regret-
grow CFR, a novel CFR variant for solving GS-1IGs. The core
idea of our algorithm is to control the inertia of cumulative
regret to grow at a sub-linear rate, in order to adapt the in-
dependent updating of bilateral payoffs. In detail, it makes
the strategies vary smoothly enough that is capable of payoff
discontinuity in GS-IIGs. We provided formal proof of the
effectiveness of forgetting the negative instant regret at every
iteration. Then in the experiment, we used multiple GS vari-
ants of Goofspiel as a test bed to compare regret-grow CFR
and existing common methods. It turns out that our algorithm
is capable of converging to NE even if other methods fail, and
significantly lower the exploitability of players in GS-1IGs.

Introduction

General-sum, imperfect information game is a theorized
model to formulate many sequential move real-life decision
problems. Imperfect-information games (IIGs) model strate-
gic interactions among a set of participants who make deci-
sions with imperfect information. General-sum (GS) game
is a game in which the payoffs of players are not necessar-
ily correlated. While quite a few algorithms like first-order
methods and some CFR variants are able to tackle the fea-
ture of zero-sum problems, few of then can be applied to
GS-IIGs. In a GS setting, the players’ payoffs are mutually
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independent. For example, even solving a two-player GS-
IIG by vanilla CFR is harder than its zero-sum counterpart,
because one player’s payoff can change considerably while
the other player just changes slightly.

Extensive form layout is common in large imperfect in-
formation games, which resembles a decision tree in that
players make decisions based on probability. For sufficiently
large IIGs that are infeasible for a linear program, iterative
algorithms are preferred because players’ strategies often
keep optimizing during a single affordable iteration. The ul-
timate goal is commonly to find a Nash Equilibrium (Nash
1950) in which no player can improve by unilaterally ad-
justing the strategy. Some special types of problems like
zero-sum IIGs, already enjoy acceptable solutions by mul-
tiple algorithms. For example, 6-card and 10-card Leduc
can be essentially be solved by First Order Method (Kroer
et al. 2015). CFR, proposed in (Martin et al. 2007) and
CFR+ proposed in (Tammelin 2014) to solve heads-up limit
Texas hold’em problem (Brown and Sandholm 2018, 2019;
Brown, Ganzfried, and Sandholm 2015) and find the base-
line solution of heads-up no-limit Texas hold’em (HUNL)
endgames in Libratus (Silver et al. 2016, 2017, 2018). And
for lower space complexity, MCCFR (Marc et al. 2009; Mar-
tin et al. 2019) are variants samples the game tree in a prob-
abilistic manner. In order to solve the problem that exhibits
ill-condition values, Tuomas Sandholm and Noam Brown
(Noam et al. 2019) proposed a discount mechanism for as-
signing different weights for every iterations.(Silver et al.
2016, 2017, 2018; Schrittwieser et al. 2020)

Two major features have made GS-IIGs challenging.
Firstly, the imperfect information makes payoffs of play-
ers rely on their opponents. Since the payoff of an action
is the expectation from all possible cases, a strategy update
from the opponent may cause a change in these probabilities
of the cases, and therefore that expectation. Thus players
cannot simply take action with the highest payoff. In fact,
approximating such a Nash equilibrium is at most PPAD
complete (Chen, Deng, and Teng 2009; Song et al. 2019).
Meanwhile, although there are known algorithms that can
solve zero-sum games efficiently, whether these algorithms
are still qualified for GS-IIGs should be speculated. Since
the independence of player payoffs, many algorithms, for
example, Mini-Max, are no longer providing optimal solu-
tions, because it assumes that payoff of one player is the



opposite of that of the other. Even for algorithms that are
capable of approaching a Nash Equilibrium, the behavior of
these algorithms near the equilibrium points, i.e. time com-
plexity and stability should be studied rigorously.

In this paper, we proposed regret-grow CFR for GS-IIGs.
Firstly, we proposed the selective forgetting of instant re-
gret, and applied it at every iteration to make the cumula-
tive regret grow in expectation. Secondly, the smoothness
of the iteration process is shown, which is crucial because
payoffs in GS-IIGs have 1-order lower smoothness than that
of ZS-1IGs. Thirdly, the updating stride is self-adjusting and
self-limiting, which has fewer parameters to tune and makes
the algorithm self-adaptive to wide-range payoffs. The sub-
linearly yet growing regret value of regret-grow CFR has
both theoretical basis and empirical significance. Finally,
both regret-grow CFR and other CFR variants are applied
to solve the GS variant of Goofspiel, and their behavior both
at iterating and near equilibrium is examined. It is shown
that there are cases that some existing CFR variants that
skip some equilibrium points and deviate toward false val-
ues. However, our algorithm on the same customized Goof-
spiel converges towards Nash equilibrium points correctly,
yet eliminates dominated strategy at the same converge rate
as the current CFR+ algorithm.

Related Work

Finding a Nash equilibrium is an important, interesting, and
well-studied problem. Like two-player zero-sum games can
be solved in polynomial time, finding (even an approxi-
mate) Nash equilibrium in a two-player GS game is PPAD-
complete (Chen, Deng, and Teng 2009), and a correlated
equilibrium can be computed efficiently (Jiang and Leyton-
Brown 2011). There are popular methods proposed for solv-
ing GS-IIGs, most of them can be categorized into vertex
enumerating methods, reactive module methods, and no-
regret methods.

The polytope vertex enumerating methods focus on ex-
tremely small-scaled games that can be converted into norm-
form games. One of the methods, proposed by (Avis et al.
2009), is to enumerating all the possible combinations for
actions with non-zero probability. The combinations of both
sides should contain the same amount of actions. By estab-
lishing equations that let actions share the same payoff, the
opponent’s probability of each action can be calculated. This
method is based on the fact that the actions presented in a
mixed strategy should have their payoffs equal, and equal
to the maximum of all legal actions’ payoff. While this al-
gorithm has a rigorous mathematical basis and can be used
to examine whether a strategy profile is a Nash equilibrium,
two fatal limitations make it not suitable for large GS-IIGs:
the algorithm is native to norm-form but not friendly to
extensive-form, and even in norm-form, the computational
time for an n X n norm-form is 4" and not a polynomial time
complexity. In principle, one can find all equilibria since the
nonlinear equations are polynomials. The idea is to enumer-
ate all supports, solve all roots of the polynomial equations,
and select the solutions that correspond to probability dis-
tributions. The methods of finding all equilibria are proba-
bilistic, that is, they will find all solutions with a given prob-

ability when they are run for at least some amount of time
(which depends on the probability). There are exponentially
many supports in the game and there can be exponentially
many equilibria. Moreover, the homotopy methods (global
Newton, tracing procedure, or quantal response method) are
not guaranteed to find all equilibria.

The homotopy methods that use the global Newton
method do not converge globally. Govindan and Wilson
observe that the iterated polymatrix approximation method
typically converges globally but is not failsafe and may get
stuck in some games. They find that the problem with ho-
motopy methods is that they need to traverse nonlinear paths
and require many small steps in order to obtain reasonable
accuracy. They also observe that the homotopy path may
have many twists and reversals. Goldberg et al. construct
examples where homotopy methods will not only need an
exponential number of pivots but also an exponential num-
ber of direction reversals. Herings and van den Elzen and
Herings and Peeters present a globally convergent homo-
topy method but note that the triangulations must have very
refined mesh and the homotopy path must be traced numer-
ically. Reinforcement learning, focusing on end-to-end so-
lution, are also used in GS-IIGs. Gutierrez et. al (Gutier-
rez Julian and Michael 2000) studied n-player GS games
in which the choices available to players are defined using
the Simple Reactive Modules Language (SRML), a subset
of Reactive Modules (Alur and Henzinger 1999), a popu-
lar and expressive system modeling language that is used in
several practical modeling checking systems (e.g., MOCHA
(Alur et al. 1998) and Prism (Kwiatkowska, Norman, and
Parker 2011)). Reactive Modules support succinct and high-
level modeling of concurrent and multi-agent systems. In
the games we study, the preferences of system components
are specified by associating with each player in the game a
temporal logic (LTL) formula that the player desires to be
satisfied. Reactive Modules Games with perfect information
(where each player can see the entire system state) have been
extensively studied (Gutierrez, Harrenstein, and Wooldridge
2015a).

The regret-based methods are proposed in early 2010s, by
making strategies proportional to the positive regret values.
And by minimizing all actions’ regret on all the information
sets, the global regret value can be minimized by minimizing
the immediate regret values, or simply put, per-information-
set no-regret method. This makes the actions easily com-
puted at drastically low computational overhead. However,
Zinkevich et al uses average strategy as output, while instant
strategy at each iterations (its state variable) varies wildly,
which is detrimental of numerical stability and convergence
when the algorithm are applied on general-sum games. Also,
the naive method of taking average strategy makes it hard
and intractable to rule out sub-optimal actions. While the al-
gorithms runs good on zero-sum game, its intrinsic numer-
ical defects brings it into technical difficulties on general-
sum games. The perfect information games allows induc-
tion, which always go extreme and produces pure strategies
as their equilibrium points, which is typically not the case in
imperfect games. Although there are proofs shows that CFR
can converge to Nash equilibrium in zero-sum games, and



the necessary condition for CFR converges is exactly Nash
equilibrium, the proof for that CFR will converge is still ab-
sent.

Preliminaries

An imperfect information game has both normal-form
and extensive-form representations, the latter is preferred
because it is native to large problems. An extensive-form
game is a decision tree that starts from the initial game state
called “root”. There is a set for all the players called P.
Each node is a game state identified by its history £, a se-
quence of all actions lead to that game state. If there are any
actions available, P(h) is the player at this node who take
action action a from A(h), such actions lead to child nodes
that represent the new game states. If & is prefix of another
node’s history b/, then it is called h C h’. Let H be the set
of all the histories, for histories identified as h and k', For
the leaf nodes who has no available actions and terminates
the game, their history sequences are not any prefix of other
histories, we use Z € H for all these nodes. All players
will receive a payoff or reward when the game reaches leaf
nodes, for each ¢ € P, that is u;(z). We denote the range of
payoffs in the game by A, and A; represent the difference
between maximal and minimal payoffs for player i € P.

In imperfect-information games, it is common that differ-
ent nodes of same player appear identical to that player. This
is because not all actions are publicly observable by every
players. Such set is one of the information sets (or infosets)
of that player. The collection of all such infosets of player
¢ is information collection Z;. The information sets are the
minimum units many strategic related quantities, is called
A(I) that all available actions on information sets.

In extensive game, the player choose action by a stochas-
tic manner, at each information set S, all the players assign a
distribution on each available action a. Every player has its
strategy o; that is a mapping that maps every information
sets S € I; with a vector RI4(9)| namely, o;(S) € R4S,
It is common that o_; is used as other players’ strategy. The
set of all players’ strategy, o, is called strategy profile.

Nash Equilibrium

Let u;(0;,0) to be the player i’s payoff. The Nash equilib-
rium is a strategy profile o that every unilateral changes in
o; profile will not increase u;(c;, 0_;), i.e.

Vi, u;(04,0-;) = H}f}XUi(UﬂU%) ey

i

For measuring how far the players are deviating from the
equilibrium, exploitablility is defined as:

epi(oi, o) = maxu;(o;, 0-;) — ui(oi,0-;)  (2)
(o

ep(o) = Zepi(UmU—i) 3)
iep
By definition, we have:

ep(o*) = epi(o},07,) =0 4

i€EP

The two-player norm form games focus on single infor-
mation set. Each player’s payoff can be defined as entries
in two matrices, let (A, B) be a binary tuple of m-by-n ma-
trices, therefore m and n are numbers of their available ac-
tions. Let x and y as strategies of both players. both have
their entities non-negative and sum to be exactly 1. As a nat-
ural result, u and v as their payoffs.

Best response condition

Let = and y be the mixed strategies of both players. Then
those actions whose probabilities are non-zero have their
payoffs to be maximal, and therefore mutually equal to oth-
ers.

;>0 < aly=u=max(aly) ®)
(3
where a; are row vectors of matrix A, and:

y; >0 = b;frac =y = mjax(bij) (6)
where b; are column vectors of matrix B.

What it has alleviated is the infinite mixed strategy prob-
lem to finite-dimension inequalities formation, which how-
ever at the cost of numerical behavior of best responses. The
collection of best responses would drop at almost all but
one of its elements even if an opponent’s strategy deviates
a little. Nevertheless, the algorithm can be used reversely,
say, for example, player 1, not to find what pure actions are
the collection I of best pure strategies should play 1 player
against player 2’s y, but when [ is potentially possible to
become the collections of player’s y.

Methodology

To make both eq(5) and eq(6) have a unique solution, for
example, if there are k non-zero entries in , namely x;, and
the rest of zero-entries x, the linear problem should contain
exactly k equations. Let y; be a non-zero part of y. From
CK possible different y;s, they form k x k linear equation,
which is required by the uniqueness of the solution.

Clearly, this method provides Nash equilibrium points at
the cost of NP-hard, by enumerating all the 1 to min(m, n),
it requires all the gmin(m,n) Conversely, the counterfactual
minimization method provides (9(}2) So the NonZeroSum-
Matrix method is only tractable in small sized information
sets, and should be act as benchmark to test whether other
algorithms could find equilibrium in test-size problem.

In a nonzero-sum game, minimax is no longer optimal,
because it wrongly assumes that both play-ers use the same
payoff function. Nonetheless, A’s minimax does guarantee
the worst-case outcome for A, because it proceeds as if B
would always choose the worst possible moves against A.
Therefore, minimax is used as the baseline for comparisons
in our examples. More generally, we consider imperfect in-
formation nonzero-sum games, in which players can have
incomplete mutual knowledge and thus SPE does not apply.

Inspired the existing algorithms, the counterfactual regret
minimization is slightly different naively applying gradient-
based optimization method, but used convex-combinations



Algorithm 1: Regret Grow CFR

Input: A, B

Output: strategy profile x, y
1: function General-Sum-Matrix (A, B):
2: m,n = A.shape
3: for k < 1 to min(m, n) do

4: forI:sum(l)=k, 1€ R™ I, €0,1do

5: for J : sum(J)=k,J € R",J; € 0,1do
6: y = A[;}J]l

7: if0 <y <1, Ay <1 then

8: Ibest =Y

9: end if

10: end for

11:  end for
12:  for J:sum(J) =k JeR" J;€0,1do

13: for I : sum(I)=k,I € R™,I; €0,1do
14: @ =B,

15: if0 <z <1 BTz <1then

16: Jbest =T

17: end if

18: end for

19:  end for

20:  for I:sum(I)=k,I € R™ I, €0,1do
21: for J : sum(J)=k,J € R",J; € 0,1do
22: J' = Ipest— g = where(Ipest > 0)

23: I'=J,,_; = where(J},,, > 0)

24: if I’ = I then

25: Tr = Ibest

26: Y= Jpest

27: end if

28: end for

29:  end for

30: end for

31: return z,y

instead. For any x

Y z=10<2<1 (7
=1

and similar y, there exist:
u(z,y) = 27 Ay (®)

v(z,y) = 2" By ©)

In typical CFR+ algorithm, since Taylor expansions is valid
when iteration 7" approaching to infinity, let R as regret on
all the actions, as the rule of the iteration have:

, R+r

"SRRy "

let ,
b= ? (1)
o D Rx+) rp (12)

x,:ZRx—Fst—ZT:U—FErp (13)

SR+>r
f:x+zﬂgﬁzﬁ9 (14)
x’%:c—i-%::;p (15)

Since the all the regret vector r comes from strictly posi-
tive actions that has better response for opponent, the payoff
functions u(z’, y) > u(x,y) always holds.

Tl _ [RE(I,a)+r"(I,a), ifrT(I,a)>0
R (Iv a’) - T T 3
RY(I,a)+er" (I,a), otherwise

(16)
where € € [0, 1], and R is truncated if negative, i.e.
RT(I,a), if RT"H1(I,a) >0
T+1 _ ’ ) ) =
k.7 a) = {0, otherwise {17)

Definition 1 Let f; from actions ¢ € {1,2,...,m} to
be approximation of best strategy y, player’s strategy p is
convex combination of f;, and a non-negative loss function
£(p,y). Then the instantaneous regret value for p deviating
away from f; is defined as r; = £(p) — £(f;).

Definition 2 If approximation above is repeated for n
times, then the cumulative loss functions for player and ad-

n

visori € {1,2,...,m} are defined as L, = > U(pe,ye) and
t=1

n
Lin =Y U(fi, ye) respectively, and the cumulative regret
t=1

is defined as R; p, = Y T4 = L,— Lin
i=1
Theorem 1 Let ¢ to be function from R to R,

is a non-negative, convex and increasing function, then

N
sup > 7i,¢® (Rip—1) <0
Yyt 1=1

Proof:

Since ¢'(R; ¢+—1) > 0, using Jensen’s inequality for all y,
% ¢ (Rit—1)fie % @' (Ri,t—1)€(fi,t,Y)

Lpr,y) =L | =& | <=
;1 &' (Rj,t—1)

N

;1 ¢ (Rj,t—1)
Lemma 1 Let r; = (r14,794,.,7Nt) € RN to be

instantaneous regret vector, and cumulative regret vector

n
R, = Y. ri Then the potential function ® : RN —
t=1

Ry is defined as ®(u) = ¢ (f) qﬁ(ui)), where ¢
i=1

R — Ry is any non-negative increasing function, and
¢ : Ry — Ry is any non-negative function for scal-
ing purpose with strictly increasing and concave properties.

Then p; = M, and theorem 7.3 is equivalent to

> VO(Ri—1);
i=1

supr; - V(I)(I}t—l) <0
Yt



n

uc RN i=1 i=1
Proof:
q)(Rt) = (p(Rt—l + I't)
1 N N 926
= (I)(Rt_l) + V<I>(Rt_1) . 5 Z Z 3uj TitTj,t

< (I)(Rt 1) + 5 Z Z 3u au T tTJ t
i=1j5=1
where the second-order term of Taylor expansion shows that

N N
> 3
4 £ 8u18u9 Z’t j’t
i=1j=1

N N
<0 (50460) & 3 vEw
N N
o (Sute) X v,
- (zf:l w@i)) (zj:l V(€ t)Q
N N
s (S s w(&)r?,t)
< C(ry)

Theorem 2 For any convex loss function £, if it takes val-
ues in [0, 1], if scaling function v is polynomial weighted
function, then for any sequence yi,Yya, ..., Yn the loss func-

tion have L, min  L;, < \/n(p—1)N?/P, which

Ci=1,2,N
also means that regret value is o(n) when n — 0o

Proof:
— ot and ¢ (2) = (a)" =

Since ¢’ (x) = (:n%)’
p(p— 1):1:’_’[2, where z floors negative components to zero
while keeps the positive component. By Holder inequality,

N
> " (ua)r,

i=1

=1
Thus,

N N
o (£ vtw)) £ e,
<200- 1) (o) v

which means that
®,(Ry) < (—DZHM@

< n(p — 1)N?/» Wthh means that the regret grows only

sub-linearly. i.e. T — 0 when 7" — o0, it’s asymptotically
approaching to best response of player should follow with.

Intuition of the Regret-Grow CFR

What inspired the CFR is the convex combination with bet-
ter actions, however, what to be maximized is a multiple-
objective uy (x,y) and uz(x,y). The exploitability provides
no-exploitability method just like existing CFR+ algorithm,

which can also reformulate two-player general-sum games
into single object optimization problem:

max(u(, )~ maxu(p.y) + (e, ) - maxv(r.q)) (18

For the iterating method, we added exploitability terms for
augmenting the existing CFR method:

Txi = u(x'my) - U(l‘,y) (19)
Tzepyi = — IIl;lX Tisq (20)
T
o R L R 1)
ZRI ZRzepy
r Ty epa
Y=yt = + =2 (22)

Z Ry Z Ry epx

This will perform maximize the player’s own payoff, and
minimize the opponent’s exploitability, which degenerates
to existing CFR when the problem is just zero-sum cases.

Experiments

We evaluate the performance of regret-grow CFR on Goof-
spiel. Goofspiel is a bidding card game where players have a
hand of cards numbered 1 to N, and take turns secretly bid-
ding on the top point-valued card in a point card stack using
cards in their hands. While all of these games have imper-
fect information and are roughly of similar size, they are a
diverse set of games, varying both in the degree (the ratio of
the number of information sets to the number of histories)
and nature (whether due to chance or opponent actions) of
imperfect information.

1000 1500 2000 2500 3000

Figure 1: Strategies and regrets for players to decide their
first cards.
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Figure 2: Strategies and regrets for players to decide their
first cards.
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Figure 3: How payoff of pure and mixed strategies evolves
at the first card.
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Figure 4: How exploitability or A and B and their sum are
minimized at the first card.

The equilibrium points

We also used subgames of Goofspiel variation as a test bed
for the techniques introduced in this paper. First, for find-
ing the equilibrium points, we used a different assessment
of the effectiveness of the algorithm in terms of availability
than the original one. The new evaluation criterion is defined
as a head-to-head comparison between the adversarial sides,
weighted differently, and the contrasting algorithms respec-
tively, counting the final benefit of both sides.

Since that customized variant of Goofspiel was used as
a test-bed for the techniques of Regret-Grow-CFR, in this
experiment, all the Goofspiel upcards are treated as 1, but
weighted as [5.00, 1.33, 2.71, 4.27] for player 1, and [4.10,
6.28, 3.33, 3.84] for player 2. When one player wins a card,
this contributes their payoff by how the card weighted by this
player, while the other’s decrease by how this card weighted
by that player.

The first chart reveals how both players make decision at
first card, this is a mixed strategy profile, which suggests
both the players bet their largest card. The empirical con-
verge rate at won’t take effect on initial few turns, rather, it
diverge away final equilibrium point by 0.771 for player 1
and 0.479 for player 2.

The result of how the players deal with their second card
is presented in Figure 3 and 4. First, their strategies are con-
verging, and therefore the equilibrium point’s strategy pro-
file is found. This can also be verified from the view of re-
gret controlling - for both players and at each point where
they make decisions, the sum of regrets for all available ac-
tions grows sub-linearly, this is also empirically verified the
regret-based theories.

An interesting result from Figure 3 and Figure 4 is, once
entered into equilibrium, both players’ strategies, typically a
mixed one, is consisted of the same number of pure strate-
gies, however, this is a natural result of Nash theorem, since
the pure strategy, will almost always have a unique best re-
sponse from the opponent, which will never make opponent
take a mixed strategy.
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Figure 6: player B, strategy distribution on available actions

For example, an equilibrium that both players’ strategies
are mixed strategy that contains 2 actions: If player A adopts
2 actions in his mixed strategy, then player B will almost
always adopt a mixed strategy that contains 2 actions. The
reason can be discussed by considering 3 cases.

(1) If B’s strategy contains only one action, i.e. pure strat-
egy, then that is impossible. Because the action that B chose
will typically not make 2 actions of A have same payoffs.

(2) Mixed strategy response from B that contain 2 ac-
tions is possible, since B’s some partitions of probability can
make A’s two actions have the same payoff.

(3) Mixed strategy response from B that contain 3 actions
or beyond is also impossible. If the additional action is in-
ferior to 2 existing actions, this sub-optimal action will be
ruled out, resulting in a 2 X 2 mixed strategy equilibrium.
If the additional action is better than the 2 existing actions,
then B will prefer the new action, shifting and eventually

landing at a new equilibrium.

In all the cases above, strategies from either side must
contain the same number of pure strategies, or actions.

The result of how the players deal with their second card
is presented in Figure 3 and 4. First, their strategies are con-
verging, and therefore the equilibrium point’s strategy pro-
file is found. This can also be verified from the view of re-
gret controlling - for both players and at each point where
they make decisions, the sum of regrets for all available ac-
tions grows sub-linearly, this is also empirically verified the
regret-based theories.

From figure 3, 7, and 8, it can be verified that the curve
of cfv values always try to follow the curve of actions with
the highest payoff, using a steady yet fast method to fol-
low. If two or more actions are the best responses that com-
prised the mixed strategy, their payoffs compete and take
turns to lead other actions. Be sure to not confuse it with a
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Figure 8: player B in subgames, payoff for strategies and actions

truly sub-optimal action, which disadvantage is permanent
and can never be overturned.

While the payoffs of actions can be oscillating wildly,
the curve of cfv adopts a fast-yet-smooth pattern to real-
ize payoff maximization and guarantee convergence. This
is because the negative instant regret is vanishing and rul-
ing out the sub-optimal action, and also because the regrets
sum across the actions’ are growing yet sub-linearly, which
makes the updating step length smaller across the times, yet
allow the significant updates influencing the subsequent iter-
ations. The limited-forgetting mechanism makes the regret
grows over time, and limiting the step length of updating
strategy; yet still makes the regret grows strictly slower than
linear increasing, which may force the strategy not to be a
sub-optimal one, and therefore guarantees converging to a
Nash equilibrium.

Behavior near Subgame equilibrium

Since we considered the problem of computing an equilib-
rium solution for general-sum games. The most common so-
lution concept is the Nash equilibrium. For € > 0, a strategy
profile o is an € - Nash equilibrium if no player deviates from
it.

The importance of deeper analyzing the endgame of
Goofspiel variation lies in testing the behavior of Regret-
Grow-CFR, especially, at some vicinity of any possible equi-
librium points. In our experiments, this results in a different
assessment of the effectiveness of the algorithm in terms of
availability than the original one. The new evaluation crite-
rion is defined as a head-to-head comparison between the
adversarial sides, weighted differently, and the contrasting
algorithms respectively, counting the final benefit of both
sides.
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Figure 9: exploitability, for both players and their sum

Figure 5 and 6 have shown 16 distinct subgames in which
player A and B deal with high loss, and show how their
strategies evolved. They had also shown how the negative
influence of bad initial guess is dissolved when the strategy
was significantly off-equilibrium, which results can be seen
in Figure 7 and 8.

While higher card weight draws much attention from both
players, the chaining logic makes players deliberately give
up the high-weighted cards by throwing low-ranking cards,
this can be verified in the subgame [(1, 1)]. For the con-
verging process, the average time lengths for ruling out
dominated strategy and perform a fully-updated strategy for
both players are 33.94 and 59.67 epochs respectively. More
specifically, as Figure 1, 5, and 6 shown, player A bet more
often his card-4 for a 5.00 reward, while player B bet a little
mixed strategy, which throws card-1 at 34.7%, but concen-
trates more on his second card for a 6.28 reward. In all the
selected 16 subgames, both players’ exploitability value and
that of the sum are shrinking, and that time complexity is no
more than the time complexity of O(1/7?), which is plotted
in dual-logarithm coordinates in Figure 9.

In the experiment, The first chart reveals how both players
make a decision at the first card, this is a mixed strategy pro-
file, which suggests both the players bet their largest card.
The empirical converge rate at won’t take effect on the ini-
tial few turns, rather, it diverges away the final equilibrium
point by 0.771 for player A and 0.479 for player B.

The game Goofspiel variant is a two-player imperfect
game that have multiple subgame nodes, on which all play-
ers reveal their actions so that players have full knowledge
about their current situations. This makes Goofspiel simple
yet capable to catch the complexity of the imperfect games.
From equation (15), it is clear that the process of exploitabil-
ity minimizing is the only necessary condition for a e-Nash
equilibrium. This effectively boost the process to both in-
spect and verify the convergent behavior and their speed near
Nash equilibrium.

The exploitability of both players at the subgame [(1, 3),
(2, 3)] has three possible equilibrium points, however, only
(1, 0) became the converging limit of CFR algorithm.

For example, player A and B at the information set have
thrown cards (1, 3) and (2, 3) respectively, the strategy pro-
file approaching to the equilibrium point (0.825, 0.175),
(0.318, 0.682) at first, but since it is not a CFR-stable saddle,
the CFR iteration process shift away and headed towards (1,
0), (0, 1) instead. The numerical error terms mainly come
from our algorithm accumulating regret at the very begin-
ning of the game is played, they should shrink to 0 asymp-
totically when 7" approaches infinity.

Conclusion and Future Works

In this paper, we introduced a novel variant of CFR that
strategy itself converges to the Nash Equilibrium. In order to
make regret-matching ideas fit into the discontinuity of GS-
IIG payoffs, regret-grow CFR adopts a partial-forget mecha-
nism to update the cumulative regrets, yet guarantees the cu-
mulative regret vector’s element sum increasing. We tested
regret-grow CFR on non-zero sum Goofspiel and its sub-
games, which showed the exploitability values for both play-
ers are descending and in the magnitude of O(1/+/T). Since
the regret-grow CFR does not require averaging the previ-
ous strategies, dominated strategies can be ruled out, which
makes probability distribution on information sets a sparse
vector most of the time.

In further research, we would like to examine how such
sparsity of payoff can facilitate the algorithms’ convergence.
Such analysis could offer further algorithmic or theoreti-
cal improvements on algorithm stability. For example, it is
promising yet challenging to adapt regret-grow CFR with
the Monte-Carlo sampling traversing method. If the nonde-
terministic character does not affect the stability of regret-
grow CFR significantly, it would be interesting to compare
the approach, in terms of the payoff of both players and ex-
ploitability values.
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