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Abstract

The two-player, imperfect information, poker card game
Goofspiel is one of the most commonly-used benchmarks
for testing equilibrium-finding algorithms. While Goofspiel
is a qualified instance of imperfect information decision prob-
lems, it considers zero-sum cases exclusively, which is classi-
fied as one of the major limitations. And even non-zero-sum
games are more general cases, they haven’t received suffi-
cient attention like their zero-sum counterparts for years. In
this work, we examined how the traditional CFR algorithm
behaves in selected information sets, and show that there are
potential equilibrium points not reachable by CFR iterating.
Then we characterized non-zero-sum games and objective
functions and reformulated the game into a single-objective
optimizing problem. It turns out that the problem generally
falls into linear-quadratic programming category, whose con-
vexity is typically not guaranteed. We also provided an iter-
ative approach to converge to these equilibrium points, and
compare them with CFR algorithm. It turns out that our it-
erative method is capable of finding equilibrium points that
CFR sometimes fails to converge to, at a cost of augmenting
the traditional iterative procedure by adding the exploitability
minimizing mechanism, but computational overhead is still
comparable with existing CFR.

Introduction
Non-zero-sum, imperfect information game is a theorized
model to formulate many sequential move real-life deci-
sion problems. Imperfect-information games (IIGs) model
strategic interactions among a set of participants who make
decisions with imperfect information. Non-zero-sum (NZS)
game is a game in which the sum of players’ payoff is not
zero, and typically not a constant. While quite a few poker
variants are instances and common benchmarks for IIGs,
few of them are capable of modeling the feature of NZS
problems. In a NZS setting, the players’ payoffs are mu-
tually independent. Even solving a two-player NZS-IIG is
harder than its zero-sum counterpart, because few existing
poker variants pay attention to an NZS game setting.

Extensive form layout is common in large imperfect in-
formation games, Which resembles a decision tree in that
players make decisions based on probability. For sufficiently
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large IIGs that are infeasible for a linear program, iterative
algorithms are preferred because players’ strategies often
keep optimizing during a single affordable iteration. The ul-
timate goal is commonly to find a Nash Equilibrium (Nash
1950) in which no player can improve by unilaterally ad-
justing the strategy. Some special types of problems like
zero-sum IIGs, already enjoy acceptable solutions by multi-
ple algorithms. For example, 6-card and 10-card Leduc can
be essentially be solved by First Order Method (Kroer et al.
2015). And CFR+ to solve heads-up limite Texas hold’em
problem (Brown and Sandholm 2018) and find the base-
line solution of heads-up no-limit Texas hold’em (HUNL)
endgames in Libratus (Brown and Sandholm 2019). In order
to solve the problem that exhibits ill-condition values, Tuo-
mas el. al (Noam et al. 2019) proposed an discount mecha-
nism for assign different wights for every iterations.(Silver
et al. 2016, 2017, 2018; Schrittwieser et al. 2020)

Two major features made problems featured as NZS and
IIG challenging. Firstly, the imperfect information makes
players’ payoff rely on their opponents. Since an action’s
payoff is an expectation from all possible cases, a strat-
egy update from the opponent may cause a change in these
cases’ probability and that expectation. Thus players cannot
simply take action with the highest payoff. Meanwhile, al-
though there are known algorithms that can solve zero-sum
games efficiently, whether these algorithms are still qualified
for NZS-IIGs should be speculated. Since the independence
of player payoffs, many algorithms, for example, Mini-Max,
are no longer providing optimal solutions, because it as-
sumes that one player’s payoff is the opposite of the other’s.
Even for algorithms that are capable of approaching a Nash
Equilibrium, the behavior of these algorithms near the equi-
librium points, i.e. time complexity and stability should be
studied rigorously.

In this paper, we focus on a two-player non-zero-sum
game. To make things familiar, we customized the exist-
ing zero-sum poker card game goofspiel to a non-zero-sum
variant. We proposed a hybrid iterating method inspired
by Counterfactual Regret Minimization and Exploitability
Descending. As all the players have their mixed strate-
gies comprised of pure actions, the actions should have
maximal therefore equal payoffs(Nash 1950). This allows
solving normal form games by picking two (or more)
pure actions, finding the opponent’s probability distribution



when these pure actions’ payoffs coresult algorithmscking
whether other not picked actions are all sub-optimal(Marc
et al. 2009; Martin et al. 2019). Then the CFR algorithm is
applied to solve customized goofspiel, we show how CFR
behaves both at iterating and near equilibrium, and then
there are cases in that CFR may skip and miss some equi-
librium points and deviate toward other equilibrium. Then
we proposed a novel methodology that fusion exploitability
minimizing with existing CFR. Finally, we tested the algo-
rithm on the same customized goofspiel and the algorithm
also exhibits excellent converging behavior.

Related Work
Finding a Nash equilibrium is an important, interesting,
and well-studied problem. Like two-player zero-sum games
can be solved in polynomial time, finding (even an ap-
proximate) Nash equilibrium in a two-player non-zero-sum
game is PPAD-complete (Chen, Deng, and Teng 2009),
and a correlated equilibrium can be computed efficiently
(Jiang and Leyton-Brown 2011). There are popular meth-
ods proposed for solving non-zero-sum imperfect informa-
tion games, most of them can be categorized into vertex enu-
merating methods, reactive module methods, and no-regret
methods.

The polytope vertex enumerating methods focus on ex-
tremely small-scaled games that can be converted into norm-
form games. One of the methods, proposed by (Avis et al.
2009), is to enumerating all the possible combinations for
actions with non-zero probability. The combinations of both
sides should contain same amount actions. By establishing
equations that let actions share the same payoff, the oppo-
nent’s probability on each actions can be calculated. This
method is based on the fact that the actions presented in a
mixed strategy should have their payoffs equal, and equal
to maximum of all legal actions’ payoff. While this algo-
rithm has rigorous mathematical basis and can be used to
examine whether a strategy profile is a Nash equilibrium,
two fatal limitations makes it not suitable for large non-zero-
sum imperfect-information games: the algorithm is native to
norm-form but not friendly to extensive-form, and even in
norm-form, the computational time for an n× n norm-form
is 4n and not a polynomial time complexity. In principle,
one can find all equilibria since the nonlinear equations are
polynomials. The idea is to enumerate all supports, solve all
roots of the polynomial equations, and select the solutions
that correspond to probability distributions. The methods of
finding all equilibria are probabilistic, that is, they will find
all solutions with given probability when they are run for
at least some amount of time (which depends on the proba-
bility). There are exponentially many supports in the game
and there can be exponentially many equilibria. Moreover,
the homotopy methods (global Newton, tracing procedure,
or quantal response method) are not guaranteed to find all
equilibria.

The homotopy methods that use the global Newton
method do not converge globally. Govindan and Wilson
observe that the iterated polymatrix approximation method
typically converges globally but is not failsafe and may get

stuck in some games. They find that the problem with ho-
motopy methods is that they need to traverse nonlinear paths
and require many small steps in order to obtain reasonable
accuracy. They also ob- serve that the homotopy path may
have many twists and reversals. Goldberg et al. construct
examples where homotopy methods will not only need an
exponential number of pivots but also an exponential num-
ber of direction reversals. Herings and van den Elzen and
Herings and Peeters present a globally convergent homo-
topy method but note that the triangulations must have very
refined mesh and the homotopy path must be traced nu-
merically. Reinforcement learning, focusing on end-to-end
solution, are also used in NZSGs. Gutierrez et. al (Gutier-
rez Julian and Michael 2000) studied non-zero-sum n-player
games in which the choices available to players are defined
using the Simple Reactive Modules Language (SRML), a
subset of Reactive Modules (Alur and Henzinger 1999), a
popular and expressive system modeling language that is
used in several practical modeling checking systems (e.g.,
MOCHA (Alur et al. 1998) and Prism (Kwiatkowska, Nor-
man, and Parker 2011)). Reactive Modules support succinct
and high-level modeling of concurrent and multi-agent sys-
tems. In the games we study, the preferences of system com-
ponents are specified by associating with each player in the
game a temporal logic (LTL) formula that the player desires
to be satisfied. Reactive Modules Games with perfect infor-
mation (where each player can see the entire system state)
have been extensively studied (Gutierrez, Harrenstein, and
Wooldridge 2015a).

The regret based methods are proposed in early 2010s, by
making strategies proportional to the positive regret values.
And by minimizing all actions’ regret on all the information
sets, the global regret value can be minimized by minimizing
the immediate regret values, or simply put, per-information-
set no-regret method. This makes the actions easily com-
puted at drastically low computational overhead. However,
Zinkevich et al uses average strategy as output, while in-
stant strategy at each iterations (its state variable) varies
wildly, which is detrimental of numerical stability and con-
vergence when the algorithm are applied on non-zero-sum
games. Also, the naive method of taking average strategy
makes it hard and intractable to rule out sub-optimal ac-
tions. While the algorithms runs good on zero-sum game,
its intrinsic numerical defects brings it into technical diffi-
culties on non-zero-sum games. This is because of the inde-
pendence of payoffs breaks the correlation of players’ pay-
off, and hence near-equilibrium payoff has one-degree-lower
flatness than non-zero-sum games. What makes it more chal-
lenging is that the backward induction, what was used in per-
fect games, is unable to find the best action. This is because
the perfect information games allows induction, which al-
ways go extreme and produces pure strategies as their equi-
librium points, which is typically not the case in imperfect
games. Although there are proofs shows that CFR can con-
verge to Nash equilibrium in zero-sum games, and the nec-
essary condition for CFR converges is exactly Nash equilib-
rium, the proof for sufficiency that CFR will converge is still
absent.



Preliminaries
An imperfect-information game have both normal form

and extensive-form, in this paper we use both of them. For
extensive-form, the game is represented by a decision tree
start from the root. There is a set for all the players called
P . Each node is identified by a sequence of all actions taken
through the path root to themselves called h for history, root
has its history empty. In classical definition, each node has a
player, who makes the action a ∈ A if any actions are avail-
able. Joint decision nodes which have multiple players make
decisions simultaneously are possible, which is a embedded
norm form game into extensive form, and can drastically re-
duce the complexity when the game has sub-games. Every
actions leads to child nodes that represent game states after
they are committed. Let H to be the set of all the histories,
for nodes identified as h and h′, if node h′ is child or n-th
generation child node of h, then it is called h ⊑ h′. For the
leaf nodes who has no available actions and terminates the
game, therefore no child nodes, their history sequences are
not any prefix of other histories, we use Z ∈ H for repre-
sent these nodes. All players will receive a payoff or reward
when the game reaches leaf nodes. We call ui(z) for what
player i can receive at leaf node z. We denote the range of
payoffs in the game by ∆, and ∆i represent the difference
between maximal and minimal payoffs for player i ∈ P .

In imperfect-information games, since actions are not
guaranteed to be observed by all the players, there are dif-
ferent nodes whose history appears identical view by some
players. Such set of nodes are called information sets S.
Apparently, all nodes n ∈ S have same player i, which is
not the case conversely. However, all nodes of same player
can be first aggregated into information sets, and all infor-
mation sets can be aggregated into information collection
Ii for every player i. It will later show that the information
sets, not nodes, are the minimum units for formulating strat-
egy problems, which we call A(S) that all available actions
on information sets.

In extensive game, the player choose action by a stochas-
tic manner, at each information set S, all the players assign a
distribution on each available action a. Every player has its
strategy σi that is a mapping that maps every information
sets S ∈ Ii with a vector R|A(S)|, namely, σi(S) ∈ R|A(S)|.
It is common that σ−i is used as other players’ strategy. The
set of all players’ strategy, σ, is called strategy profile.

Nash Equilibrium
Let ui(σi, σ) to be the player i’s payoff. The Nash equilib-
rium is a strategy profile σ that every unilateral changes in
σi profile will not increase ui(σi, σ−i), i.e.

∀i, ui(σi, σ−i) = max
σ′
i

ui(σ
′
i, σ−i) (1)

For measuring how far the players are deviating from the
equilibrium, exploitablility is defined as:

epi(σi, σ−i) = max
σ′
i

ui(σ
′
i, σ−i)− ui(σi, σ−i) (2)

ep(σ) =
∑
i∈P

epi(σi, σ−i) (3)

By definition, we have:

ep(σ∗) =
∑
i∈P

epi(σ
∗
i , σ

∗
−i) = 0 (4)

The two-player norm form games focus on single infor-
mation set. Each player’s payoff can be defined as entries
in two matrices, let (A,B) be a binary tuple of m-by-n ma-
trices, therefore m and n are numbers of their available ac-
tions. Let x and y as strategies of both players. both have
their entities non-negative and sum to be exactly 1. As a nat-
ural result, u and v as their payoffs.

Best response condition
Let x and y be the mixed strategies of both players. Then
those actions whose probabilities are non-zero have their
payoffs to be maximal, and therefore mutually equal to oth-
ers.

xi > 0 ⇐⇒ aTi y = u = max
i

(aTi y) (5)

where ai are row vectors of matrix A, and:

yj > 0 ⇐⇒ bTj x = v = max
j

(bTj x) (6)

where bj are column vectors of matrix B.
What it has alleviated is the infinite mixed strategy prob-

lem to finite-dimension inequalities formation, which how-
ever at the cost of numerical behavior of best responses. The
collection of best responses would drop at almost all but
one of its elements even if an opponent’s strategy deviates
a little. Nevertheless, the algorithm can be used reversely,
say, for example, player 1, not to find what pure actions are
the collection I of best pure strategies should play 1 player
against player 2’s y, but when I is potentially possible to
become the collections of player’s y.

Methodology
To make both eq(5) and eq(6) have a unique solution, for
example, if there are k non-zero entries in x, namely x1, and
the rest of zero-entries x0, the linear problem should contain
exactly k equations. Let y1 be a non-zero part of y. From
Ck

n possible different y1s, they form k × k linear equation,
which is required by the uniqueness of the solution.

Clearly, this method provides Nash equilibrium points at
the cost of NP-hard, by enumerating all the 1 to min(m,n),
it requires all the 2min(m,n). Conversely, the counterfactual
minimization method providesO( 1

ϵ2 ). So the NonZeroSum-
Matrix method is only tractable in small sized information
sets, and should be act as benchmark to test whether other
algorithms could find equilibrium in test-size problem.

In a nonzero-sum game, minimax is no longer optimal,
because it wrongly assumes that both play-ers use the same
payoff function. Nonetheless, A’s minimax does guarantee
the worst-case outcome for A, because it proceeds as if B
would always choose the worst possible moves against A.
Therefore, minimax is used as the baseline for comparisons
in our examples. More generally, we consider imperfect in-
formation nonzero-sum games, in which players can have
incomplete mutual knowledge and thus SPE does not apply.



Algorithm 1: Regret Grow CFR
Input: A,B
Output: strategy profile x, y

1: function Non-zero-sum-Matrix (A,B):
2: m,n = A.shape
3: for k← 1 to min(m,n) do
4: for I : sum(I) = k, I ∈ Rm, Ii ∈ 0, 1 do
5: for J : sum(J) = k, J ∈ Rn, Jj ∈ 0, 1 do
6: y = A−1

[I,J]1

7: if 0 ≤ y ≤ 1, Ay ≤ 1 then
8: Ibest = y
9: end if

10: end for
11: end for
12: for J : sum(J) = k, J ∈ Rn, Jj ∈ 0, 1 do
13: for I : sum(I) = k, I ∈ Rm, Ii ∈ 0, 1 do
14: x = B−1

[I,J]1

15: if 0 ≤ x ≤ 1, BTx ≤ 1 then
16: Jbest = x
17: end if
18: end for
19: end for
20: for I : sum(I) = k, I ∈ Rm, Ii ∈ 0, 1 do
21: for J : sum(J) = k, J ∈ Rn, Jj ∈ 0, 1 do
22: J ′ = Ibest−J = where(Ibest > 0)
23: I ′ = J ′

best−I = where(J ′
best > 0)

24: if I ′ = I then
25: x = Ibest
26: y = Jbest
27: end if
28: end for
29: end for
30: end for
31: return x, y

Inspired the existing algorithms, the counterfactual regret
minimization is slightly different naively applying gradient-
based optimization method, but used convex-combinations
instead. For any x

m∑
i=1

xi = 1, 0 ≤ x ≤ 1 (7)

and similar y, there exist:

u(x, y) = xTAy (8)

v(x, y) = xTBy (9)

In typical CFR+ algorithm, since Taylor expansions is valid
when iteration T approaching to infinity, let R as regret on
all the actions, as the rule of the iteration have:

x′ =
R+ r∑
R+

∑
r

(10)

let
p =

r∑
r

(11)

x′ =

∑
Rx+

∑
rp∑

R+
∑
r

(12)

x′ =

∑
Rx+

∑
rx−

∑
rx+

∑
rp∑

R+
∑
r

(13)

x′ = x+

∑
r∑

R+
∑
r
p (14)

x′ ≈ x+

∑
r∑
R
p (15)

Since the all the regret vector r comes from strictly posi-
tive actions that has better response for opponent, the payoff
functions u(x′, y) > u(x, y) always holds.

RT+1(I, a) =

{
RT

+(I, a) + rT (I, a), if rT (I, a) ≥ 0

RT
+(I, a) + ϵrT (I, a), otherwise

(16)
where ϵ ∈ [0, 1], and R is truncated if negative, i.e.

RT+1
+ (I, a) =

{
RT+1(I, a), if RT+1(I, a) ≥ 0

0, otherwise
(17)

Definition 1 Let fi from actions i ∈ {1, 2, ...,m} to
be approximation of best strategy y, player’s strategy p̂ is
convex combination of fi, and a non-negative loss function
ℓ(p̂, y). Then the instantaneous regret value for p̂ deviating
away from fi is defined as ri = ℓ(p̂)− ℓ(fi).

Definition 2 If approximation above is repeated for n
times, then the cumulative loss functions for player and ad-

visor i ∈ {1, 2, ...,m} are defined as L̂n =
n∑

t=1
ℓ(p̂t, yt) and

Li,n =
n∑

t=1
ℓ(fi,t, yt) respectively, and the cumulative regret

is defined as Ri,n =
n∑

t=1
ri,t = L̂n − Li,n

Theorem 1 Let ϕ to be function from R to R+

is a non-negative, convex and increasing function, then

sup
yt

N∑
i=1

ri,tϕ
′(Ri,t−1) ≤ 0

Proof:
Since ϕ′(Ri,t−1) > 0, using Jensen’s inequality for all y,

ℓ(p̂t, y) = ℓ

 N∑
i=1

ϕ′(Ri,t−1)fi,t

N∑
j=1

ϕ′(Rj,t−1)

, y

 ≤ N∑
i=1

ϕ′(Ri,t−1)ℓ(fi,t,y)

N∑
i=1

ϕ′(Rj,t−1)

Lemma 1 Let rt = (r1,t, r2,t, ..., rN,t) ∈ RN to be
instantaneous regret vector, and cumulative regret vector

Rn =
n∑

t=1
rt. Then the potential function Φ : RN →

R+ is defined as Φ(u) = ψ

(
N∑
i=1

ϕ(ui)

)
, where ϕ :

R → R+ is any non-negative increasing function, and
ψ : R+ → R+ is any non-negative function for scal-
ing purpose with strictly increasing and concave properties.
Then p̂t =

∇Φ(Rt−1)·ft
N∑

j=1
∇Φ(Rt−1)j

, and theorem 7.3 is equivalent to

sup
yt

rt · ∇Φ(Rt−1) ≤ 0



Lemma 2 Φ(Rn) ≤ Φ(0) + 1
2

n∑
t=1

C(rt), where C(rt) =

sup
u∈RN

[
ψ′

(
N∑
i=1

ϕ(ui)

)
N∑
i=1

ϕ′′(ui)r
2
i,t

]
Proof:
Φ(Rt) = Φ(Rt−1 + rt)

= Φ(Rt−1) +∇Φ(Rt−1) · rt + 1
2

N∑
i=1

N∑
j=1

∂2Φ
∂ui∂uj

ri,trj,t

≤ Φ(Rt−1) +
1
2

N∑
i=1

N∑
j=1

∂2Φ
∂ui∂uj

ri,trj,t

where the second-order term of Taylor expansion shows that
N∑
i=1

N∑
j=1

∂2Φ
∂ui∂uj

ri,trj,t

≤ ψ′′
(

N∑
i=1

ψ(ξi)

)
N∑
i=1

N∑
j=1

ψ′(ξi)ψ
′(ξj)ri,trj,t

+ψ′
(

N∑
i=1

ψ(ξi)
N∑
i=1

ψ′′(ξi)r
2
i,t

)
= ψ′′

(
N∑
i=1

ψ(ξi)

)(
N∑
i=1

ψ′(ξi)ri,t

)2

+ψ′
(

N∑
i=1

ψ(ξi)
N∑
i=1

ψ′′(ξi)r
2
i,t

)
≤ C(rt)

Theorem 2 For any convex loss function ℓ, if it takes val-
ues in [0, 1], if scaling function ψ is polynomial weighted
function, then for any sequence y1, y2, ..., yn the loss func-
tion have L̂n − min

i=1,2,...,N
Li,n ≤

√
n(p− 1)N2/p, which

also means that regret value is o(n) when n→∞
Proof:
Since ψ′(x) = (x

2
p )′ = 2

px(p−2)/p , and ϕ′′(x) = (xp+)
′′ =

p(p− 1)xp−2
+ , where x+ floors negative components to zero

while keeps the positive component. By Holder inequality,
N∑
i=1

ψ′′(ui)r
2
i,t

≤ p(p−1)
(

N∑
i=1

(
(ui)

p−2
+

)p/(p−2)
)(p−2)/p ( N∑

i=1

|ri,t|p
)2/p

Thus,

ψ

(
N∑
i=1

ψ(ui)

)
N∑
i=1

ψ′′(ui)r
2
i,t

≤ 2(p− 1)

(
N∑
i=1

|ri,t|p
)2/p

which means that

Φp(Rn) ≤ (p− 1)
N∑
i=1

||rt||2p

≤ n(p − 1)N2/p which means that the regret grows only
sub-linearly. i.e. RT

T → 0 when T →∞, it’s asymptotically
approaching to best response of player should follow with.

Intuition of the Regret-Grow CFR
What inspired the CFR is the convex combination with bet-
ter actions, however, what to be maximized is a multiple-
objective u1(x, y) and u2(x, y). The exploitability provides
no-exploitability method just like existing CFR+ algorithm,

which can also reformulate two-player non-zero-sum games
into single object optimization problem:

max
x,y

(u(x, y)−max
p

u(p, y)+ v(x, y)−max
q
v(x, q)) (18)

For the iterating method, we added exploitability terms for
augmenting the existing CFR method:

rxi = u(xi, y)− u(x, y) (19)

rxepyi = −max
q
xi, q (20)

x′ = x+
rx∑
Rx

+
rxepy∑
Rxepy

(21)

y′ = y +
ry∑
Ry

+
ryepx∑
Ryepx

(22)

This will perform maximize the player’s own payoff, and
minimize the opponent’s exploitability, which degenerates
to existing CFR when the problem is just zero-sum cases.

Experiments
We evaluate the performance of regret-grow CFR on Goof-
spiel. Goofspiel is a bidding card game where players have a
hand of cards numbered 1 to N, and take turns secretly bid-
ding on the top point-valued card in a point card stack using
cards in their hands. While all of these games have imper-
fect information and are roughly of similar size, they are a
diverse set of games, varying both in the degree (the ratio of
the number of information sets to the number of histories)
and nature (whether due to chance or opponent actions) of
imperfect information.

Figure 1: Strategies and regrets for players to decide their
first cards.



Figure 2: Strategies and regrets for players to decide their
first cards.

Figure 3: How payoff of pure and mixed strategies evolves
at the first card.

Figure 4: How exploitability or A and B and their sum are
minimized at the first card.

The equilibrium points
We also used subgames of Goofspiel variation as a test bed
for the techniques introduced in this paper. First, for find-
ing the equilibrium points, we used a different assessment
of the effectiveness of the algorithm in terms of availability
than the original one. The new evaluation criterion is defined
as a head-to-head comparison between the adversarial sides,
weighted differently, and the contrasting algorithms respec-
tively, counting the final benefit of both sides.

Since that customized variant of Goofspiel was used as
a test-bed for the techniques of Regret-Grow-CFR, in this
experiment, all the goofspiel upcards are treated as 1, but
weighted as [5.00, 1.33, 2.71, 4.27] for player 1, and [4.10,
6.28, 3.33, 3.84] for player 2. When one player wins a card,
this contributes their payoff by how the card weighted by this
player, while the other’s decrease by how this card weighted
by that player.

The first chart reveals how both players make decision at
first card, this is a mixed strategy profile, which suggests
both the players bet their largest card. The empirical con-
verge rate at won’t take effect on initial few turns, rather, it
diverge away final equilibrium point by 0.771 for player 1
and 0.479 for player 2.

The result of how the players deal with their second card
is presented in Figure 3 and 4. First, their strategies are con-
verging, and therefore the equilibrium point’s strategy pro-
file is found. This can also be verified from the view of re-
gret controlling - for both players and at each point where
they make decisions, the sum of regrets for all available ac-
tions grows sub-linearly, this is also empirically verified the
regret-based theories.

An interesting result from Figure 3 and Figure 4 is, once
entered into equilibrium, both players’ strategies, typically a
mixed one, is consisted of the same number of pure strate-
gies, however, this is a natural result of Nash theorem, since
the pure strategy, will almost always have a unique best re-
sponse from the opponent, which will never make opponent
take a mixed strategy.



Figure 5: player A, regret values for available actions

Figure 6: player B, strategy distribution on available actions

For example, an equilibrium that both players’ strategies
are mixed strategy that contains 2 actions: If player A adopts
2 actions in his mixed strategy, then player B will almost
always adopt a mixed strategy that contains 2 actions. The
reason can be discussed by considering 3 cases.

(1) If B’s strategy contains only one action, i.e. pure strat-
egy, then that is impossible. Because the action that B chose
will typically not make 2 actions of A have same payoffs.

(2) Mixed strategy response from B that contain 2 ac-
tions is possible, since B’s some partitions of probability can
make A’s two actions have the same payoff.

(3) Mixed strategy response from B that contain 3 actions
or beyond is also impossible. If the additional action is in-
ferior to 2 existing actions, this sub-optimal action will be
ruled out, resulting in a 2 × 2 mixed strategy equilibrium.
If the additional action is better than the 2 existing actions,
then B will prefer the new action, shifting and eventually

landing at a new equilibrium.
In all the cases above, strategies from either side must

contain the same number of pure strategies, or actions.
The result of how the players deal with their second card

is presented in Figure 3 and 4. First, their strategies are con-
verging, and therefore the equilibrium point’s strategy pro-
file is found. This can also be verified from the view of re-
gret controlling - for both players and at each point where
they make decisions, the sum of regrets for all available ac-
tions grows sub-linearly, this is also empirically verified the
regret-based theories.

From figure 3, 7, and 8, it can be verified that the curve
of cfv values always try to follow the curve of actions with
the highest payoff, using a steady yet fast method to fol-
low. If two or more actions are the best responses that com-
prised the mixed strategy, their payoffs compete and take
turns to lead other actions. Be sure to not confuse it with a



Figure 7: player A in subgames, payoff for strategies and actions

Figure 8: player B in subgames, payoff for strategies and actions

truly sub-optimal action, which disadvantage is permanent
and can never be overturned.

While the payoffs of actions can be oscillating wildly,
the curve of cfv adopts a fast-yet-smooth pattern to real-
ize payoff maximization and guarantee convergence. This
is because the negative instant regret is vanishing and rul-
ing out the sub-optimal action, and also because the regrets
sum across the actions’ are growing yet sub-linearly, which
makes the updating step length smaller across the times, yet
allow the significant updates influencing the subsequent iter-
ations. The limited-forgetting mechanism makes the regret
grows over time, and limiting the step length of updating
strategy; yet still makes the regret grows strictly slower than
linear increasing, which may force the strategy not to be a
sub-optimal one, and therefore guarantees converging to a
Nash equilibrium.

Behavior near Subgame equilibrium

Since we considered the problem of computing an equilib-
rium solution for non-zero-sum games. The most common
solution concept is the Nash equilibrium. For ϵ ≥ 0, a strat-
egy profile σ is an ϵ - Nash equilibrium if no player deviates
from it.

The importance of deeper analyzing the endgame of
Goofspiel variation lies in testing the behavior of Regret-
Grow-CFR, especially, at some vicinity of any possible equi-
librium points. In our experiments, this results in a different
assessment of the effectiveness of the algorithm in terms of
availability than the original one. The new evaluation crite-
rion is defined as a head-to-head comparison between the
adversarial sides, weighted differently, and the contrasting
algorithms respectively, counting the final benefit of both
sides.



Figure 9: exploitability, for both players and their sum

Figure 5 and 6 have shown 16 distinct subgames in which
player A and B deal with high loss, and show how their
strategies evolved. They had also shown how the negative
influence of bad initial guess is dissolved when the strategy
was significantly off-equilibrium, which results can be seen
in Figure 7 and 8.

While higher card weight draws much attention from both
players, the chaining logic makes players deliberately give
up the high-weighted cards by throwing low-ranking cards,
this can be verified in the subgame [(1, 1)]. For the con-
verging process, the average time lengths for ruling out
dominated strategy and perform a fully-updated strategy for
both players are 33.94 and 59.67 epochs respectively. More
specifically, as Figure 1, 5, and 6 shown, player A bet more
often his card-4 for a 5.00 reward, while player B bet a little
mixed strategy, which throws card-1 at 34.7%, but concen-
trates more on his second card for a 6.28 reward. In all the
selected 16 subgames, both players’ exploitability value and
that of the sum are shrinking, and that time complexity is no
more than the time complexity ofO(1/T 2), which is plotted
in dual-logarithm coordinates in Figure 9.

In the experiment, The first chart reveals how both players
make a decision at the first card, this is a mixed strategy pro-
file, which suggests both the players bet their largest card.
The empirical converge rate at won’t take effect on the ini-
tial few turns, rather, it diverges away the final equilibrium
point by 0.771 for player A and 0.479 for player B.

The game goofspiel variant is a two-player imperfect
game that have multiple subgame nodes, on which all play-
ers reveal their actions so that players have full knowledge
about their current situations. This make goofspiel simple
yet capable to catch the complexity of the imperfect games.
From equation (15), it is clear that the process of exploitabil-
ity minimizing is the only necessary condition for a ϵ-Nash
equilibrium. This effectively boost the process to both in-
spect and verify the convergent behavior and their speed near
Nash equilibrium.

The exploitability of both players at the subgame [(1, 3),
(2, 3)] has three possible equilibrium points, however, only
(1, 0) became the converging limit of CFR algorithm.

For example, player A and B at the information set have
thrown cards (1, 3) and (2, 3) respectively, the strategy pro-
file approaching to the equilibrium point (0.825, 0.175),
(0.318, 0.682) at first, but since it is not a CFR-stable saddle,
the CFR iteration process shift away and headed towards (1,
0), (0, 1) instead. The numerical error terms mainly come
from our algorithm accumulating regret in the very begin-
ning of the game is played, they should shrink to 0 asymp-
totically when T approaches infinity.

Conclusion and Future Works
In this paper, we introduced a novel variant of CFR whose
latest iteration is capable of converging to the Nash Equi-
librium. In order to efficiently rule out dominated strategy,
regret-grow CFR adopts a partial-forget mechanism to up-
date the cumulative regrets, yet guarantees the cumulative
regret vector’s element sum increasing. We tested regret-
grow CFR on non-zero sum Goofspiel and its subgames,
which showed the exploitability values for both players are
descending and in the magnitude of ep O(1/T 2). Since
the regret-grow CFR does not require averaging the previ-
ous strategies, dominated strategies can be ruled out, which
makes probability distribution on information sets a sparse
vector most of the time.

In further research, we would like to examine how the
payoff of the game can affect the algorithms’ convergence.
Such analysis could offer further algorithmic or theoretical
improvements on algorithm stability. It is also promising yet
challenging to adapt regret-grow CFR with the Monte-Carlo
sampling traversing method. If the nondeterministic charac-
ter does not affect the stability of regret-grow CFR signifi-
cantly, it would be interesting to compare the approach, in
terms of the payoff of both players and exploitability values.
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